More articles from Volume 1, Issue 1, 2024
REDOX AND METABOLIC REPROGRAMMING OF BREAST CANCER CELLS AND ASSOCIATED ADIPOSE TISSUE - THE CORNERSTONES OF ADAPTIVE TUMOUR BEHAVIOUR
INSULIN MODULATES MITOCHONDRIAL STRUCTURAL AND FUNCTIONAL MOSAICISM IN BROWN ADIPOCYTES
NITRITE MITIGATES OXIDATIVE BURST IN ISCHEMIA/REPERFUSION IN BRAIN SLICES
NITRIC OXIDE, SUPEROXIDE AND PEROXYNITRITE – REDOX REGULATION OF THE CARDIOVASCULAR SYSTEM BY NITRO-OXIDATIVE STRESS AND S-NITROS(YL)ATION
DIETARY NITRATE AS PIVOT ON THE GUT MICROBIOTA-HOST REDOX COMMUNICATION
UNCOUPLING PROTEIN 1 EXPRESSION IN LIPOMA TISSUE AND LIPOMA-DERIVED STEM CELLS
Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, Faculty of Medicine, University of Nis, Niš, Serbia
Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, Faculty of Medicine, University of Nis, Niš, Serbia
Institute for Biological Research “Sinisa Stankovic”–National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
Editor: Bato Korac
Published: 29.08.2024.
Short oral presentations
Volume 1, Issue 1 (2024)
Abstract
Mechanisms and factors that lead to the formation of lipomas, benign tumors of adipose tissue, are still insufficiently elucidated. Mesenchymal stem cells (MSCs) isolated from lipomas have some similar characteristics to MSCs isolated from white adipose tissue but differ at the molecular level and in their differentiation potential. Considering histological appearance of lipomas, it is not clear to what extent lipomas share common characteristics with other adipose tissue type, brown adipose tissue. Therefore, the aim of this study was to examine the level of uncoupling protein 1 (UCP1), a marker of brown adipose tissue, expression in lipoma tissue as well as in MSCs isolated from lipomas, i.e. lipoma-derived mesenchymal stem cells (LDSCs). LDSCs were grown in standard cell culture conditions and subjected to adipogenic differentiation. UCP1 expression was examined at the RNA level, using Real-Time PCR, and at the protein level, using immunohistochemistry and immunogold staining. Expression of UCP1 in lipoma tissue and LDSCs was compared with the expression of UCP1 in subcutaneous white adipose tissue (scWAT) and adipose-derived mesenchymal stem cells (ADSCs) grown and differentiated in the same cell culture conditions. Differences were observed in UCP1 expression at both RNA and protein levels in lipomas compared to scWAT directing the future research towards the potential of browning mechanisms of adipose tissue involved in lipoma tissue formation.
This research was financially supported by the Science Fund of the Republic of Serbia, PROMIS, #6066747, WARMED and the Ministry of Science, Technological Development and Innovations of the Republic of Serbia, Contract No. 451-03-65/2024-03/200113.
Citation
Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Article metrics
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.