Current issue

Online ISSN:
3042-1772

Volume 1 , Issue 1, (2024)

Published:
29.08.2024.

Open Access

Powered by

Opus logo

Editors' word

RedoXplore is the official Journal of Serbian Society for Mitochondrial and Free Radical Physiology.

RedoXplore is a peer-reviewed Open Access Journal that covers a broad range of topics in the field of Redox Biology, aiming to be of interest and use to both researchers and practitioners.

The aim of RedoXplore is to publish research that has the potential to significantly impact the field of Redox Biology, Medicine, and Chemistry, to benefit society, human and animal health, and the conservation of microorganisms and flora.

RedoXplore is particularly interested in innovative research and future trends within Redox Biology. This includes in vivo and in vitro studies of redox homeostasis in plants and microorganisms, animal models, and human studies, from inflammatory, cardiovascular, neurological, mitochondrial, and metabolic diseases to aging and cancer. The research focus of the journal is to unravel redox-dependent molecular mechanisms in these and numerous other conditions, as well as the influence of environmental factors, lifestyle, nutrition, drugs, and the development of new pharmacological approaches.

Editors together with the Editorial Board of the RedoXplore ensure the quality of published research through rigorous peer review, editorial oversight, and strict adherence to research ethics.

29.08.2024.

Professional paper

ANTIOXIDANTS AND FREE RADICALS IN HUMAN HEALTH AND DISEASE

Increased damage by ROS plays a role in the development of neurodegenerative diseases, especially Alzheimer’s Disease and other dementias, and diets rich in antioxidants (high intake of fruits and vegetables) seem neuroprotective (as well as being protective against many other age-related diseases). However, attempts to treat/prevent such diseases by giving high doses of antioxidants such as vitamins E and C and carotenoids have, overall, been unsuccessful. Reasons for this will be discussed. A major focus of our work is a unique diet-derived thiol/thione with antioxidant properties, namely ergothioneine (ET). Low blood levels of ET are a risk factor for the development of neurodegenerative and cardiovascular diseases, frailty, eye disease, pre-eclampsia and age-related diseases generally. We have identified “adequate levels” of plasma ET in humans, levels below which are associated with increased disease occurrence, and the reasons leading to these low levels are under investigation. In animal studies, ET has exhibited the ability to modulate inflammation, scavenge certain ROS, protect against acute respiratory distress syndrome, decrease brain damage in models of Parkinson and Alzheimer diseases and stroke, prevent endothelial dysfunction, protect against ischemia-reperfusion injury, counteract iron dysregulation, hinder lung and liver fibrosis, and mitigate damage to the lungs, kidneys, liver, gastrointestinal tract, and testis. ET may also influence the gut microbiome. There is evidence that ET is specifically accumulated at sites of tissue injury, so we have called it an “adaptive antioxidant” that may not interfere with the normal physiological roles of ROS. But does low ET predispose to age-related diseases or is it a spurious correlation? Extensive cell and animal studies strongly suggest the former. Caveats in the use of ergothioneine supplements to prevent/ameliorate aged-related diseases include its potential to generate trimethylamine-N-oxide by the action of ergothionase enzymes in gut bacteria and its ability to be taken up by many bacteria, a few of which are pathogenic (e.g. H. pylori, M. tuberculosis). These caveats will be discussed.

Barry Halliwell

29.08.2024.

Professional paper

UNCOUPLING PROTEIN 1 EXPRESSION IN LIPOMA TISSUE AND LIPOMA-DERIVED STEM CELLS

Mechanisms and factors that lead to the formation of lipomas, benign tumors of adipose tissue, are still insufficiently elucidated. Mesenchymal stem cells (MSCs) isolated from lipomas have some similar characteristics to MSCs isolated from white adipose tissue but differ at the molecular level and in their differentiation potential. Considering histological appearance of lipomas, it is not clear to what extent lipomas share common characteristics with other adipose tissue type, brown adipose tissue. Therefore, the aim of this study was to examine the level of uncoupling protein 1 (UCP1), a marker of brown adipose tissue, expression in lipoma tissue as well as in MSCs isolated from lipomas, i.e. lipoma-derived mesenchymal stem cells (LDSCs). LDSCs were grown in standard cell culture conditions and subjected to adipogenic differentiation. UCP1 expression was examined at the RNA level, using Real-Time PCR, and at the protein level, using immunohistochemistry and immunogold staining. Expression of UCP1 in lipoma tissue and LDSCs was compared with the expression of UCP1 in subcutaneous white adipose tissue (scWAT) and adipose-derived mesenchymal stem cells (ADSCs) grown and differentiated in the same cell culture conditions. Differences were observed in UCP1 expression at both RNA and protein levels in lipomas compared to scWAT directing the future research towards the potential of browning mechanisms of adipose tissue involved in lipoma tissue formation.

This research was financially supported by the Science Fund of the Republic of Serbia, PROMIS, #6066747, WARMED and the Ministry of Science, Technological Development and Innovations of the Republic of Serbia, Contract No. 451-03-65/2024-03/200113.

Sanja Stojanovic, Aleksandra Korac, Stevo Najman, Aleksandra Jankovic

29.08.2024.

Professional paper

THE ROLE OF NRF2-DEPENDENT METABOLIC REPROGRAMMING OF BROWN ADIPOSE TISSUE IN ORTHOTOPIC BREAST CANCER MODEL

Breast cancer is characterized by specific metabolic changes that support tumorigenesis, highlighting the emerging appreciation of cancer as a metabolic disease. These metabolic changes are simultaneous with redox reprogramming with nuclear factor erythroid 2-related factor 2 (Nrf2) representing their master integrator. Given that interscapular brown adipose tissue (IBAT) influences whole-body metabolism, our goal was to investigate the redox-metabolic crosstalk between the tumor and the host at the systemic level by exploring Nrf2-driven metabolic changes that occur in IBAT in the orthotopic model of breast cancer in wild-type (WT) and mice lacking functional Nrf2 (Nrf2KO). We analyzed the protein expression of key enzymes involved in glucose and lipid metabolism in control groups and at different points during tumor growth (10 mg, 50 mg, 100 mg, 200 mg, and 400 mg). In both WT and Nrf2KO mice, the results indicated a transient induction of hexokinase 2 expression during the early phase of tumor growth (<100 mg). Accordingly, pyruvate dehydrogenase expression followed the same profile. In Nrf2KO mice, a general decline in glyceraldehyde 3-phosphate dehydrogenase, phosphofructokinase-1, and glucose-6-phosphate dehydrogenase expression was detected during the late phase of tumor growth (>100 mg). Since no changes in WT mice occurred, these findings are considered Nrf2-dependent. Concomitantly, a decrease in protein expression of fatty acid synthase and acetyl-CoA carboxylase in Nrf2KO mice was observed. These observations correspond to decreased levels of 5'-AMP-activated protein kinase and hypoxia-inducible factor 1 during the late-phase (>100 mg) of tumor growth in Nrf2KO mice which suggests their involvement in transcriptional regulation. Our results revealed that IBAT metabolism responds to tumor growth and underscored that this communication is Nrf2-dependent giving implications for further understanding of breast cancer in the light of systemic metabolic disease.

This research was supported by the Science Fund of the Republic of Serbia, #7750238, Exploring new avenues in breast cancer research: Redox and metabolic reprogramming of cancer and associated adipose tissue - REFRAME.

Maja Vukobratovic, Strahinja Djuric, Jelena Jevtic, Tamara Zakic, Aleksandra Korac, Aleksandra Jankovic, Bato Korac

29.08.2024.

Professional paper

NOVEL TARGETED VIOLOGEN FOR THE INDUCTION OF SUPEROXIDE PRODUCTION IN MITOCHONDRIA

Mitochondrial production of O2•– and H2O2 has been implicated in redox signaling and in the pathogenesis of numerous diseases including cancer, neurodegeneration, and cardiovascular diseases. To understand the exact role of those species, new chemical biology tools for selective and efficient induction of mitochondrial superoxide production are needed. Here, we report the development of a new viologen-based redox cycling agent, mito-diquat (Mito-DQ), capable of inducing targeted mitochondrial O2•– production at significantly higher rates as compared to previously reported mito-paraquat (Mito-PQ), a widely used chemical tool to study mitochondria-dependent redox signaling.

Matea Juric, Bruna Rafaela Pereira Resende, Tarun Pant, Adam Sikora, Micael Hardy, Jacek Zielonka

29.08.2024.

Professional paper

NRF2/AMPK AXIS IS REQUIRED FOR REDOX-MEDIATED PHASE RESETTING OF MUSCULOSKELETAL CLOCKS UPON ACUTE MECHANICAL LOADING

In mammals, a multi-oscillator circadian system generates behavioural, metabolic and physiological ~24h rhythms, with tissue-specific physiological cues enabling local circadian phase adjustments. Emerging work has shown musculoskeletal tissue homeostasis and mechanical responses to be under circadian control. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response, is a clock-controlled target in several peripheral tissues and also modifies circadian gene expression and rhythmicity. However, the role of NRF2 in mechanical loading-induced changes in musculoskeletal tissues has yet to be elucidated. Wild-type (WT) and Nrf2 KO mice of young (3-6m) or old age (18-20m) harbouring a PER2::luciferase clock reporter were subjected to acute mechanical joint loading of the right leg (peak load 9N, 40 cycles of 10sec) during light phase whilst the contralateral (left) leg served as a non-loaded control. Musculoskeletal tissues were collected for analysis 4 hrs later. Real-time bioluminescence imaging of clock gene reporter activity, protein and mRNA levels of target markers, NRF2/ARE transactivation and genome-wide RNAseq analyses were undertaken. We show that acute mechanical loading in WT mice led to a decrease in gene expression of key members in the negative and auxiliary feedback loops of the molecular clock, associated with the phase-resetting of PER2::luc protein oscillations in the skeletal muscle and a knee joint. This was accompanied by a significant increase in the markers of oxidative burden as well as gene expression and protein abundance levels of antioxidant enzymes. Moreover, acute mechanical loading induced a significant activation of the redox-sensitive energy sensor, AMP-activated kinase (AMPK), known to be involved in molecular clock resetting. We thus examined whether the above acute mechanical responses were dependent on NRF2 activity. Nrf2 KO mice showed an altered response to acute mechanical loading, characterized by blunted circadian resetting and antioxidant responses, and altered AMPK activation. Furthermore, dampened responses to acute mechanical signals were found in ageing WT mouse musculoskeletal tissues, whilst AMPK activator treatments in WT mice induced circadian resetting and antioxidant responses in an NRF2-dependent manner. In conclusion, these data demonstrate that AMPK/NRF2 axis is required for relaying acute mechanical signals to the musculoskeletal system by controlling redox-mediated phase resetting of musculoskeletal clocks and antioxidant protection, which have important implications in understanding biomechanical mechanisms involved in musculoskeletal tissue maintenance in health and with ageing.

Ufuk Ersoy, Phaedra Winstanley-Zarach, Blandine Poulet, Vanja Pekovic-Vaughan

29.08.2024.

Professional paper

NITRIC OXIDE, SUPEROXIDE AND PEROXYNITRITE – REDOX REGULATION OF THE CARDIOVASCULAR SYSTEM BY NITRO-OXIDATIVE STRESS AND S-NITROS(YL)ATION

Oxidative stress is characterized by an excessive and prolonged formation of oxidants, causing an accumulating load of irreversible oxidative modifications of proteins, lipids, and nucleic acids that compromise cell integrity. This competes with the concept of redox regulation, combining the regulatory influence of nitric oxide (•NO), superoxide (O2•―), and their derivatives on redox-sensitive signaling pathways in the cell. The transition from redox regulation to oxidative stress is not only determined by the absolute amount of oxidants formed, but also by the respective intracellular site of formation, by the capacity of the defense machinery of the respective cell type, and by the ratio between •NO and O2•― that determines the nature of secondary radical species formed. Equimolar and concomitant fluxes of •NO and O2•―, for instance, favor the formation of the oxidant peroxynitrite making O2•― an antagonist of •NO as well as an inhibitor of prostacyclin synthesis, while an excess of •NO over O2•― supports the formation of nitrosating species. Secondary •NO-derived species hence not only define cellular targets affected but also the nature of posttranslational modifications. A profound knowledge of redox regulation and the conditions supporting its fluent transition into oxidative stress is hence of outermost importance in molecular cardiovascular medicine. The present overview therefore aims to determine the spectrum of •NO-derived reactive species and the cellular conditions characteristic for reversible modifications and their modulation of cellular targets in redox regulation. The second objective is to define preconditions in cardiovascular cells culminating in an expenditure of the cellular antioxidant system and an accumulation of irreversible modifications that compromise cellular functions to a point of no return.

Andreas Daiber

29.08.2024.

Professional paper

REDOX METABOLIC CHANGES IN TUMOR AND ASSOCIATED ADIPOSE TISSUE OF COLON CANCER PATIENTS

Colorectal cancer presents a significant global health challenge, with a high mortality rate. It is the third most commonly diagnosed cancer and is therefore a major cause for concern. The development of colorectal cancer is multifaceted, involving a combination of genetic predispositions and lifestyle factors. The redox and metabolic states may influence the intricate process of colon cancer development. To gain a deeper understanding of the redox-metabolic profiles associated with colon cancer, a human study was conducted. In biopsies from patients with colon cancer, the antioxidant status: copper, zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutamate-cysteine ligase (GCL), thioredoxin (Trx) and lactate metabolism were examined in tumor and unaffected colon tissue (remote 15-20 cm) as well as in adipose tissue: proximal (near the tumour tissue), distal (remote 6 cm) and unaffected (remote over 6 cm). The protein levels of CuZnSOD, MnSOD, GSH-Px, and Trx are increased in the tumor tissue compared to the unaffected colon tissue. In addition, the expression of the lactate dehydrogenase (LDH) A isoform, the total activity of LDH and the lactate concentration are higher in transformed tumor tissue than in normal colon tissue. On the other hand, lactate concentration increases and several AD components (CuZnSOD, MnSOD, CAT, GSH-Px, GCL and Trx) decrease in adipose tissue with tumor proximity. Shifts in redox and lactate metabolism in tumor tissue associated with spatial changes in lactate and antioxidant enzymes gradients in adjacent adipose tissue clearly indicate a local redox metabolic interaction between tumor and tumor-associated adipose tissue in shaping the malignant phenotype in human colorectal cancer.

Jelena Jevtic, Tamara Zakic, Aleksandra Korac, Sanja Milenkovic, Dejan Stevanovic, Aleksandra Jankovic, Bato Korac

29.08.2024.

Professional paper

DIETARY NITRATE AS PIVOT ON THE GUT MICROBIOTA-HOST REDOX COMMUNICATION

Humans are complex holobionts in which many physiological functions are ensured by the gut microbiota. The communication between the microbiota and its human host relies on immune, neural, metabolic and endocrine pathways and the derailment of this interaction can lead to gastrointestinal and systemic diseases. Here, we propose a novel form of communication between the microbiota and the host, based on the production of redox species by gut bacteria and the activation of signaling cascades in host mucosa. The biological significance of such a pathway is further highlighted by the observation that these inter-kingdom interactions are modulated by dietary nitrate, the major precursor of nitrite and NO in vivo. We demonstrate that nitrate has a positive metabolic effect in a murine model of antibiotic-induced dysbiosis by regulating cecum morphology and body weight (p<0.05). In agreement with these observations, shallow shotgun sequencing analysis showed that nitrate modulates the metabolic function of bacteria involved in the metabolism of carbohydrates, likely aiding in food digestion and substrate delivery to the host. Furthermore, we observed that the exposure to antibiotics decreases the expression of tight junction proteins in the colon and that nitrate recovers the expression of both occludin (p<0.05) and claudin-5 (p<0.01). The activation of the Nrf2/ARE pathway was also investigated by the downstream expression of detoxifying enzymes including NQO1 and GCLM/GCLC. Here, dietary nitrate emerges as a pivot regulating microbiota-host interactions through redox pathways. Nitrate modulates the function of gut microbiota during dysbiosis by enhancing bacterial metabolic performance with positive effects on host body weight and prevents the loss of tight junction proteins likely reinforcing gut barrier integrity. Given that increased epithelial permeability may lead to leaky gut syndrome, triggering local and systemic disorders, this study has the potential to transform the way Redox Biology expands from the bench to patient's bedside.   

Bárbara S. Rocha, João Laranjinha

29.08.2024.

Professional paper

TUMOR SIZE AS THE BEST PREDICTOR FOR THE PRESENCE OF BREAST CANCER METASTASES IN AXILLARY LYMPH NODES

The metastasis of breast cancer to the axillary lymph nodes represents a crucial aspect of disease progression and prognostic evaluation. The presence of metastases in the axillary lymph nodes is a key indicator that breast cancer is in an advanced stage, which can influence the therapeutic approach and the patient's prognosis. For this reason, we conducted a study aimed at examining the factors that contribute to the presence of metastases in lymph nodes in our female population. This research represents a prospective study conducted at the Institute of Oncology of Vojvodina in Sremska Kamenica. The study included 72 female participants diagnosed with breast cancer who underwent surgery at the Institute of Oncology of Vojvodina and had not received preoperative chemotherapy or radiation therapy. Initially, anamnestic data were collected from the participants, followed by a pathohistological analysis of the tumor tissue samples, including immunohistochemical analysis. We examined the influence of age, tumor size, activity of estrogen, progesterone, and HER2 receptors (human epidermal growth factor receptor-2)  in tumors, as well as the occurrence of menarche and breastfeeding duration, on the presence of metastases in axillary lymph nodes. The results of binary logistic regression showed that the only significant predictor for the presence of metastases in axillary lymph nodes was tumor size (p=0.01, Wald=6.57, and Exp(B)=1.11), while the other examined predictors were not statistically significant (p>0.05). In our study population, the size of the breast cancer was crucial for the presence of metastases in the axillary lymph nodes.

This research was supported by the Science Fund of the Republic of Serbia, #7750238, Exploring new avenues in breast cancer research: Redox and metabolic reprogramming of cancer and associated adipose tissue - REFRAME.

Zorka Drvendžija, Mirjana Udicki, Tamara Zakić, Aleksandra Janković, Biljana Srdić Galić, Aleksandra Korać, Bato Korać