Current issue
Volume 1, Issue 1, 2024
Online ISSN: 3042-1772
Volume 1 , Issue 1, (2024)
Published: 29.08.2024.
Open Access
All issues
Contents
29.08.2024.
Professional paper
DIFFERENTIAL SPATIAL DISTRIBUTION OF SYNTHETIC NANO- AND MICRO-PARTICLES EXPLAINS THE EFFECTS ON CARDIOVASCULAR FUNCTION – IMPLICATIONS FOR AIR POLLUTION HEALTH EFFECTS
Particulate matter (PM) air pollution presents a major environmental and public health challenge because of its non-uniform size distribution and chemical composition. Air quality regulations generally categorize particulate matter (PM) size into PM10, PM2.5, and ultrafine particles (UFPs) with aerodynamic diameters smaller than 10, 2.5, and 0.1 µm, respectively. We examined the differential impact of particle size per se on selected organ systems using a custom whole-body mouse exposure system using synthetic PM (SPM). The micrometer-sized SPM accumulated in the lungs as the primary entry organ, while ultrafine SPM showed less accumulation, implying a transition into circulation. Micro SPM-exposed mice exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. Ultrafine SPM-exposed mice did not show oxidative stress in the lungs but rather at the brain, heart, and vasculature levels. Endothelial dysfunction and blood pressure increase were more pronounced in ultrafine SPM exposed mice, supported by increased endothelin-1 and decreased endothelial nitric oxide synthase expression, enhancing constriction and reducing vasodilation. To derive a preliminary estimate of the cardiovascular disease burden of UFPs in humans, we used new high-resolution exposure data at a global scale, and applied hazard ratios from an epidemiological cohort study. We derived a UFP-associated incidence of 419 (95% CI 78–712) thousand cardiovascular disease cases per year in the European Union and 5.6 (95% CI 1.1–9.3) million globally. This work provides novel insights into the different toxicological profiles of inhaled ultrafine particles and public health consequences of exposure, guiding future studies.
Marin Kuntic, Ivana Kuntic, Dirk Cleppien, Andrea Pozzer, David Nußbaum, Matthias Oelze, Tristan Junglas, Lea Strohm, Henning Ubbens, Steffen Daub, Maria Teresa Bayo Jimenez, Sven Danckwardt, Thomas Berkemeier, Omar Hahad, Matthias Kohl, Sebastian Steven, Albrecht Stroh, Jos Lelieveld, Thomas Münzel, Andreas Daiber
29.08.2024.
Professional paper
CO3•−, THE RADICAL THAT CONNECTS PEROXYNITRITE AND FENTON CHEMISTRY
Oxidative biochemistry centered about 35 years ago on the one-electron reduction of H2O2 by Fe2+, the Fenton reaction, to yield HO· and a Fe(III)-complex. The discovery that NO· is formed in vivo and that it reacts with O2·− at a diffusion-controlled rate led to ONOO− as an additional oxidant. The rate constant of the Fenton reaction is 53 M−1s−1 up to about pH 4, but above it the rate constant increases linearly with pH. This acceleration of the Fenton reaction led to the hypothesis that above pH 5 formation of FeO2+ predominates. Thermodynamically, this species is comparable to HO· as an oxidant. HCO3− accelerates the reaction even more, and convincing evidence has been presented that the complex of Fe2+ with CO32− reacts with H2O2 to form CO3·− and a Fe(III)-complex, conceivably via FeO2+ as an intermediate. The rapid reaction of ONOO− with CO2 (k > 107 M−1s−1) leads to ONOOCO2− that, depending on the CO2 concentration, yields varying amounts of NO2· and CO3·−. These two oxidizing radicals together nitrate aromatic residues. Compared to 35 years ago, oxidative biochemistry is no longer concerned with the indiscriminate oxidations and additions of HO·, but with the more selective reactions of CO3·− and NO2·.
Willem H Koppenol
29.08.2024.
Professional paper
EXERCISE-INDUCED SYSTEMIC RESPONSE: THE ROLE OF CIRCULATING EXTRACELLULAR VESICLES
Regular physical exercise (PE) leads to a systemic adaptation to redox homeostasis perturbation, one of the hallmarks of exercise adaptation. Studies have shown that PE can alter the molecular composition of extracellular vesicles (EVs), impacting their ability to communicate with other cells and modulate physiological processes. EVs circulating in the body and secreted from various cell types, including skeletal muscle cells, contain various regulatory molecules and mediate intercellular communications and tissue cross-talk. Considering that the health-related benefits of a physically active lifestyle are partially driven by various bioactive molecules released into the circulation during exercise, collectively termed “exerkines”, there has been a rapidly growing interest in the role of EVs cargo as “carriers” in the multi-systemic, adaptive response to exercise. Indeed, a potential mechanism by which plasma EVs released during exercise impact ageing and diseases related to redox impairment is increased delivery of redox components, such as redox transcription factors and antioxidants. This presentation will offer a general overview of the biology of exercise-induced EVs and their putative role in health maintenance and disease prevention, with a focus on redox homeostasis control.
Daniela Caporossi
29.08.2024.
Professional paper
NITRITE MITIGATES OXIDATIVE BURST IN ISCHEMIA/REPERFUSION IN BRAIN SLICES
Nitrite is the typical byproduct of nitric oxide (•NO) autooxidation in biological systems. However, certain circumstances favor its reduction “back” to the signaling free radical, providing a non-enzymatic route for the synthesis of •NO. In pathophysiological conditions such as ischemia/reperfusion (I/R), where low oxygen availability limits nitric oxide synthase activity, nitrite reduction to •NO may allow protective modulation of mitochondrial oxidative metabolism and thus reduce the impact of I/R on brain tissue. In the current study, we used high-resolution respirometry to evaluate the effects of nitrite in an in vitro model I/R using hippocampal slices. We found that reoxygenation was accompanied by an increase in oxygen flux, a phenomenon that has been coined “oxidative burst”. The amplitude of this “oxidative burst” was decreased by nitrite in a concentration-dependent manner. These results support the notion that nitrite mediates a decrease in the hyper-reduction of the electron transport system during ischemia, decreasing the accelerated oxygen consumption that characterizes the reoxygenation phase of I/R that has been associated with an increase in oxidant production. Additionally, a pilot in vivo study in which animals received a nitrate-rich diet as a strategy to increase circulating and tissue levels of nitrite also revealed that the “oxidative burst” was decreased in the nitrate-treated animals. These results may provide mechanistic support to the observation of a protective effect of nitrite in situations of brain ischemia.
Cândida Dias, Cátia F. Lourenço, João Laranjinha, Ana Ledo
29.08.2024.
Professional paper
INSULIN MODULATES MITOCHONDRIAL STRUCTURAL AND FUNCTIONAL MOSAICISM IN BROWN ADIPOCYTES
Since the discovery of the thermogenic role of brown adipocytes, there was consensus that the biochemical and metabolic function of their mitochondria is uniform. By switching the ATP production between glycolytic pathway and oxidative phosphorylation, brown adipocytes are able to produce heat in mitochondria through uncoupling protein 1 (UCP1). Thermogenically active brown adipocyte mitochondria are characterized by clear morphological features (long, tightly packed cristae). The process of their biogenesis includes an increased number of mitochondria (by division), increase of their surface area, and incorporation of UCP1 as well as specific structural organization of the cristae. But, is it true that all BA mitochondria within one cell are structurally and functionally the same? Do they harbor the same set of enzymes? Actually, the very first cell mosaicism, e.g. Harlequin appearance was shown in brown adipose tissue. This unique uneven UCP1 expression suggests that brown adipocyte’s mitochondria may be heterogeneous regarding production of ATP (bioenergetic) vs. heat (thermogenic) role. This presentation deals with structural and functional mitochondrial mosaicism and changes caused by insulin.
This research was supported by the Science Fund of the Republic of Serbia, #7750238, Exploring new avenues in breast cancer research: Redox and metabolic reprogramming of cancer and associated adipose tissue - REFRAME.
Igor Golic, Marija Aleksic, Sara Stojanovic, Tamara Zakic, Aleksandra Jankovic, Bato Korac, Aleksandra Cvoro, Aleksandra Korac
29.08.2024.
Professional paper
NITRIC OXIDE, SUPEROXIDE AND PEROXYNITRITE – REDOX REGULATION OF THE CARDIOVASCULAR SYSTEM BY NITRO-OXIDATIVE STRESS AND S-NITROS(YL)ATION
Oxidative stress is characterized by an excessive and prolonged formation of oxidants, causing an accumulating load of irreversible oxidative modifications of proteins, lipids, and nucleic acids that compromise cell integrity. This competes with the concept of redox regulation, combining the regulatory influence of nitric oxide (•NO), superoxide (O2•―), and their derivatives on redox-sensitive signaling pathways in the cell. The transition from redox regulation to oxidative stress is not only determined by the absolute amount of oxidants formed, but also by the respective intracellular site of formation, by the capacity of the defense machinery of the respective cell type, and by the ratio between •NO and O2•― that determines the nature of secondary radical species formed. Equimolar and concomitant fluxes of •NO and O2•―, for instance, favor the formation of the oxidant peroxynitrite making O2•― an antagonist of •NO as well as an inhibitor of prostacyclin synthesis, while an excess of •NO over O2•― supports the formation of nitrosating species. Secondary •NO-derived species hence not only define cellular targets affected but also the nature of posttranslational modifications. A profound knowledge of redox regulation and the conditions supporting its fluent transition into oxidative stress is hence of outermost importance in molecular cardiovascular medicine. The present overview therefore aims to determine the spectrum of •NO-derived reactive species and the cellular conditions characteristic for reversible modifications and their modulation of cellular targets in redox regulation. The second objective is to define preconditions in cardiovascular cells culminating in an expenditure of the cellular antioxidant system and an accumulation of irreversible modifications that compromise cellular functions to a point of no return.
Andreas Daiber
29.08.2024.
Professional paper
DIETARY NITRATE AS PIVOT ON THE GUT MICROBIOTA-HOST REDOX COMMUNICATION
Humans are complex holobionts in which many physiological functions are ensured by the gut microbiota. The communication between the microbiota and its human host relies on immune, neural, metabolic and endocrine pathways and the derailment of this interaction can lead to gastrointestinal and systemic diseases. Here, we propose a novel form of communication between the microbiota and the host, based on the production of redox species by gut bacteria and the activation of signaling cascades in host mucosa. The biological significance of such a pathway is further highlighted by the observation that these inter-kingdom interactions are modulated by dietary nitrate, the major precursor of nitrite and NO in vivo. We demonstrate that nitrate has a positive metabolic effect in a murine model of antibiotic-induced dysbiosis by regulating cecum morphology and body weight (p<0.05). In agreement with these observations, shallow shotgun sequencing analysis showed that nitrate modulates the metabolic function of bacteria involved in the metabolism of carbohydrates, likely aiding in food digestion and substrate delivery to the host. Furthermore, we observed that the exposure to antibiotics decreases the expression of tight junction proteins in the colon and that nitrate recovers the expression of both occludin (p<0.05) and claudin-5 (p<0.01). The activation of the Nrf2/ARE pathway was also investigated by the downstream expression of detoxifying enzymes including NQO1 and GCLM/GCLC. Here, dietary nitrate emerges as a pivot regulating microbiota-host interactions through redox pathways. Nitrate modulates the function of gut microbiota during dysbiosis by enhancing bacterial metabolic performance with positive effects on host body weight and prevents the loss of tight junction proteins likely reinforcing gut barrier integrity. Given that increased epithelial permeability may lead to leaky gut syndrome, triggering local and systemic disorders, this study has the potential to transform the way Redox Biology expands from the bench to patient's bedside.
Bárbara S. Rocha, João Laranjinha
29.08.2024.
Professional paper
ANTIOXIDANTS AND FREE RADICALS IN HUMAN HEALTH AND DISEASE
Increased damage by ROS plays a role in the development of neurodegenerative diseases, especially Alzheimer’s Disease and other dementias, and diets rich in antioxidants (high intake of fruits and vegetables) seem neuroprotective (as well as being protective against many other age-related diseases). However, attempts to treat/prevent such diseases by giving high doses of antioxidants such as vitamins E and C and carotenoids have, overall, been unsuccessful. Reasons for this will be discussed. A major focus of our work is a unique diet-derived thiol/thione with antioxidant properties, namely ergothioneine (ET). Low blood levels of ET are a risk factor for the development of neurodegenerative and cardiovascular diseases, frailty, eye disease, pre-eclampsia and age-related diseases generally. We have identified “adequate levels” of plasma ET in humans, levels below which are associated with increased disease occurrence, and the reasons leading to these low levels are under investigation. In animal studies, ET has exhibited the ability to modulate inflammation, scavenge certain ROS, protect against acute respiratory distress syndrome, decrease brain damage in models of Parkinson and Alzheimer diseases and stroke, prevent endothelial dysfunction, protect against ischemia-reperfusion injury, counteract iron dysregulation, hinder lung and liver fibrosis, and mitigate damage to the lungs, kidneys, liver, gastrointestinal tract, and testis. ET may also influence the gut microbiome. There is evidence that ET is specifically accumulated at sites of tissue injury, so we have called it an “adaptive antioxidant” that may not interfere with the normal physiological roles of ROS. But does low ET predispose to age-related diseases or is it a spurious correlation? Extensive cell and animal studies strongly suggest the former. Caveats in the use of ergothioneine supplements to prevent/ameliorate aged-related diseases include its potential to generate trimethylamine-N-oxide by the action of ergothionase enzymes in gut bacteria and its ability to be taken up by many bacteria, a few of which are pathogenic (e.g. H. pylori, M. tuberculosis). These caveats will be discussed.
Barry Halliwell
29.08.2024.
Professional paper
MITOCHONDRIAL DISEASE: FROM MECHANISMS TO THERAPY
Mitochondrial diseases are a large family of extremely heterogeneous disorders genetically determined by mutations in either the nuclear genome or the mitochondrial DNA. Most of the mitochondrial disease genes are expressed in all cell types. However, in many conditions, some cell types are more affected than others. However, the reasons for this tissue-specificity remain poorly understood. To investigate the functional basis of the striking tissue-specificity in mitochondrial diseases, we analyzed several bioenergetic parameters, including oxygen consumption rates, Q redox poise, and reactive oxygen species production in mouse brain and liver mitochondria fueled by different substrates. In addition, we determined how these functional parameters are affected by electron transport chain impairment in a tissue-specific manner using pathologically relevant mouse models lacking either Ndufs4 or Ttc19, leading to complex I or III defects, respectively. No cure is currently available for most of the mitochondrial diseases. We previously showed that the coordinated activation of autophagy, lysosomal biogenesis, and mitochondrial biogenesis by rapamycin, ameliorated the myopathic phenotype of a muscle-specific knockout mouse for Cox15 (Cox15sm), encoding an enzyme involved in heme A biosynthesis. However, the role of mitophagy has been poorly investigated. We found that urolithin A, a direct mitophagy inducer, improved motor performance and myopathy in the Cox15sm mice, without increasing the activity of the respiratory chain complexes in a 10 week-treatment. These results indicate that activation of mitophagy can be a suitable treatment to ameliorate mitochondrial myopathies.
Valeria Balmaceda, Raffaele Cerutti, Anthony L. Moore, Erika Fernandez-Vizarra, Carlo Viscomi
29.08.2024.
Professional paper
PREPARATION FOR OXIDATIVE STRESS: HISTORY, RECENT ADVANCES AND FUTURE DIRECTIONS
Many animal species are remarkably resilient to the harmful conditions of hypoxia and reoxygenation, a phenomenon widely observed across many species and environmental settings. The ability to survive oxygen deprivation and reintroduction without significant cellular damage is partially attributed to the upregulation of antioxidants, a strategy termed "Preparation for Oxidative Stress" (POS). The concept of POS is that by producing more antioxidants under hypoxia animals would anticipate the eventual and potentially damaging reintroduction of oxygen. Historically, the specific mechanisms through which POS is activated remained elusive. Over the past decade, significant advancements have been made in understanding POS at a molecular level and in identifying its widespread in the animal kingdom. Notably, a detailed molecular mechanism for the activation of POS under conditions of low oxygen availability has been proposed, emphasizing the role of reactive oxygen species in modulating antioxidant response through redox-sensitive transcription factors. Furthermore, recent research has demonstrated the occurrence of POS in free-ranging animals under completely natural settings, confirming its ecological and physiological relevance. Despite recent advancements, some aspects of POS remain underexplored and should be prioritized in future research. These include the experimental validation of the mechanisms proposed to underlie POS and the assessment of the relevance of POS in multi-stressor scenarios, particularly to understand how organisms cope with combined stressors in fluctuating environments.
Daniel C Moreira