https://doi.org/10.70200/RX202401034H

CO₃⁺⁻, THE RADICAL THAT CONNECTS PEROXYNITRITE AND FENTON CHEMISTRY

Willem H Koppenol^{1*}

^{1*}Professor Emeritus, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland, koppenol@inorg.chem.ethz.ch

Oxidative biochemistry centered about 35 years ago on the one-electron reduction of H_2O_2 by Fe^{2+} , the Fenton reaction, to yield HO[•] and a Fe(III)-complex. The discovery that NO[•] is formed *in vivo* and that it reacts with $O_2^{\bullet-}$ at a diffusion-controlled rate led to ONOO⁻ as an additional oxidant. The rate constant of the Fenton reaction is 53 $M^{-1}s^{-1}$ up to about pH 4, but above it the rate constant increases linearly with pH. This acceleration of the Fenton reaction led to the hypothesis that above pH 5 formation of FeO²⁺ predominates. Thermodynamically, this species is comparable to HO[•] as an oxidant. HCO₃⁻ accelerates the reaction even more, and convincing evidence has been presented that the complex of Fe²⁺ with CO_3^{2-} reacts with H_2O_2 to form $CO_3^{\bullet-}$ and a Fe(III)-complex, conceivably *via* FeO²⁺ as an intermediate. The rapid reaction of ONOO⁻ with CO_2 ($k > 10^7 M^{-1}s^{-1}$) leads to $ONOOCO_2^{-}$ that, depending on the CO_2 concentration, yields varying amounts of NO_2^{\bullet} and $CO_3^{\bullet-}$. These two oxidizing radicals together nitrate aromatic residues. Compared to 35 years ago, oxidative biochemistry is no longer concerned with the indiscriminate oxidations and additions of HO[•], but with the more selective reactions of $CO_3^{\bullet-}$ and NO_2^{\bullet} .